

Abstract— Automated, efficient software deployment is
essential for today’s modern cloud hosting providers. With
advances in cloud technology, on demand cloud services
offered by public providers are becoming increasingly
powerful, anchoring the ecosystem of cloud services. Cloud
infrastructure services are appealing in part because they
enable customers to acquire and release infrastructure
resources on demand for applications in response to load
surges. This paper addresses the challenge of building an
effective multi-cloud application deployment controller as a
customer add-on outside of the cloud utility service itself.
Such external controllers must function within the constraints
of the cloud providers’ APIs. In this paper, we describe the
different steps necessary to deploy applications using such
external controller. Then with a set of candidates for such
external controllers, we use the proposed taxonomy to survey
several management tools such as Chef, SaltStack, and
Ansible for application automation on cloud computing
services based on the defined model. We use the taxonomy
and survey results not only to identify similarities and
differences of the architectural approaches of cloud
computing, but also to identify areas requiring further
research.

Keywords—Distributed computing, Software, Open source

software, Public domain software, Software as a service,
Software maintenance, Software packages.

I. INTRODUCTION
Cloud and cloud services have become more popular in

recent years. In the cloud hosting industry, companies have
found that costs can be reduced by improving up-time in
servers and creating a scalable server based on load.
According to a white paper by Vision Solutions, 59% of
Fortune 500 companies experienced a minimum of 1.6 hours
of downtime per week [1]. This means that for a company
who has 10,000 employees who on average make a salary of
$30 per hour [2], or $60,000 per year, this downtime can
potentially create a loss of $480,000 weekly or nearly 25
million dollars annually, not including the cost of benefits,
loss of sales, or negative impact to the reputation of the
provider from services being unavailable. Consequently, it is

The authors are with the University of Texas at San Antonio (UTSA) in the

Electrical and Computer Engineering Department. This paper was supported
by the Open Cloud Institute at UTSA.

of the utmost importance for a company’s servers to have their
services installed, configured, and running as quickly as
possible and as consistent as possible to help reduce costs.
This translates into automated deployment and configuration.
However, in academia cloud and cloud services have not been
adopted as quickly as they have in industry. This slower
movement towards the cloud in academia can be attributed to
faculty and student researchers lacking the full scope of
knowledge, support as well as the time and resources that
companies are able to devote to integrating and efficiently
using the cloud. [3]

It is realistic to assume that some cloud-based companies,
like Amazon, host data centers that have over 50,000 servers
per availability zone with more than one center per zone [4]. It
is in centers like this or other large companies which host a
large number of servers that it becomes critical for fast
deployment of software and ease of deployment. Deployment
methods such as Ansible become critical for these types of
situations where simple bash scripting no longer becomes
feasible.

The approach taken in this research is to create a one click
system where a user is capable of deploying both
infrastructure and software to heterogeneous cloud
environments using standard deployment methods. The final
objective is to develop a single framework which be used to
reach out and configure the various cloud environments as is
shown in Figure 1.

Figure 1: Multi Cloud Application Deployment Controller (Multi-cloud ADC)

This new framework contains a host system which
orchestrates the scripting and deployment of N-nodes to
various types of clouds operated by any of the major providers
or even providers implementing private cloud in-house. The

James O. Benson, John J. Prevost, and Paul Rad
Electrical and Computer Engineering Department

The University of Texas at San Antonio
{james.benson, jeff.prevost, paul.rad}@utsa.edu

Survey of Automated Software Deployment for
Computational and Engineering Research

978-1-4673-9519-9/16/$31.00 ©2016 IEEEAuthorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 20:56:55 UTC from IEEE Xplore. Restrictions apply.

host system would first ask you to choose which application
you need to build, for example, a Chef server, WordPress,
Rails, database server such as Cassandra or MongoDB, or
even another cloud OS such as OpenStack. Next, the system
would determine if one or multiple servers are necessary. The
framework would then provide a list of common operating
system and an option to select the of quantity of nodes. Once a
few other basic items are selected, the cloud and infrastructure
would be built and the software deployed along with any SSH
keys, usernames/passwords, etc. Likewise, a user could create
a cluster of servers to be installed with a specific operating
system and pre-selected software chosen from a list of
available software.

For educational facilities and researchers, previous research
has been focused on simplifying the cloud. One such method
uses a program called Blender [3]. Blender helps simplify the
building of a cloud infrastructure and installation of programs
on the cloud. While this project is notable, it has not been
widely adopted and vigorously tested unlike other commercial
products like Juju or OpenStack Heat, for infrastructure
deployment, or Ansible, Chef, and SaltStack for software
deployment.

In Scientific and Engineering computational research there
is no “one type fits all solution” due to the fact that researcher
needs vary greatly based on the problem domain and the
researcher’s knowledge and preference. It is therefore
important to survey the needs of researchers in academia to
identify specific needs in terms of computational power,
storage requirements, required programs and system
configurations. Once this information is determined, it would
be possible to have predefined scripts run, build out the
required infrastructure and automatically install and configure
the necessary software. This would provide a complete
solution to the researcher significantly reducing the effort
required to get their custom cloud implemented. The work
proposed here is an alternative method to Blender [3] as it uses
commercial products to help automatically deploy software
packages as necessary based upon the needs of a specific user.

In this paper, we chose two specific use-cases based on two
research domains. Each research domain requires specific
software packages to be deployed and configured. The first
package is focused on chemistry consisting of four
applications which are all in the apt-get repository. The second
package is more focused on data analytics consisting of three
applications one of which, octave, that has two additional
packages to allow for parallelization across several different
nodes. These research domains will allow us to test different
deployment models to characterize effectiveness, ease of use
and speed of deployment. The key metrics for evaluating the
ease of deployment is the code required to execute it, time to
execute both a clean install and existing installation on a
single node verse two nodes. Likewise, summaries of the
software deployment and what they are capable of will be
described as well, including if they have a GUI, encrypt
traffic, and what language it is based off of and others.

II. HISTORY: IMAGES VS SCRIPTING
There are two main approaches to setting up the

infrastructure of standup servers: imaging and scripting. Both

approaches have a number of advantages and limitations,
which are detailed below.

Once an image has been set up, imaging a server is a very
fast and dependable way of deploying a preconfigured system,
including authentication and potentially difficult service
infrastructures. Presently, companies such as rightscale.com
can stand up one of countless images on any cloud provider a
customer would like in just a matter of minutes. However,
these images have their limitations. Typically, images may
not have been recently updated which means that several
pieces of software may be outdated or critical security patches
may be missing. Further, if a customer desires a slightly
different configuration, a completely new image needs to be
set up. The inflexibility of the final image is one of the major
drawbacks to imaging. Every desired change of an image
requires a new image to be saved. These duplicate images
which may vary only minimally can occupy a large volume of
space. Further, incorporating software updates, patches and
any end user customizations are slow to save.

Scripting while it may not be as instantaneous as imaging,
especially for complex or lengthy tasks, does overcome many
of the limitations of imagine. Specifically, it allows the
flexibility of installing all of the necessary and desired
software, including updates, and architecting between systems.
Likewise, scripting can be dynamic enough to distribute
custom files to each of the N-nodes to ensure that necessary
files work appropriately, something that is impossible when
using imaging for server set up. An example of this might be
distributing lists of IP addresses, custom hostnames, or
specific license files for software, or the system, to operate
correctly.

Another advantage of scripting is that it requires very little
space. The recipes or scripts typically are only kilobytes large
and the instead of having duplicates of the same operating
system for each image, in scripting only one version of the
operating system and one version of the software is needed.
Figure 2 - Images vs Scripting provides an overview of the
different space requirements of imaging vs. scripting. The
schematic highlights how imaging can become very resource
intensive while scripting allows for more flexibility with
minimal resource allocation.

Figure 2 - Images vs Scripting

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 20:56:55 UTC from IEEE Xplore. Restrictions apply.

In summary, scripting seen at the high level is superior to
imaging due to its increased flexibility, adaptability, and lower
space requirements. In addition, as scripting languages such as
Ansible, Chef, and Salt and others are becoming increasingly
more human readable the field of automating tasks becomes
more accessible. Likewise, scripting is becoming smarter by
incorporating error testing and simplifying reporting to
pass/fail. Modern scripting can accomplish a variety of
images in parallel each with complex tasks. Further,
frequently each of these scripting tools have modules or
libraries for more specific actions that might otherwise require
bash. For example, creating users can be a simple, “user:
name=JohnDoe” in Ansible. [5]

III. Decoupling Application and Infrastructure Delivery
Many of the previous works on resource provisioning

assume a central controller that combines application control
and arbitration policy [6, 7, 8, 9]. Parekh et al. [6]
demonstrated the use of classical control theory to fine tune
the parameters of a controller of a cloud server, such as email.
Soundararajan et al. [7] present control policies for dynamic
provisioning of a database server. Urgaonkar et al. [8] use
queueing theory to model a multi-tier application and to
determine the amount of physical resources needed by the
application. Paul et al. [9] used network resource partitioning
using Infiniband network.

Cloud Infrastructure platforms present a well-defined
REST-full application programing interface (API) service to
their end users. Today, the cloud provider APIs are stateless
service without direct knowledge of the application
performance metrics, or the impact of allocation and
placement choices on the service quality of the applications.
The API service provides a useful separation of concerns: the
end user is insulated from the details of the underlying
physical resources, and the provider is insulated from the
details of the end user application

Our position is that the application delivery model should
also reflect the decoupling of application topology and
configuration as an external service from infrastructure
deployment defined by cloud providers. In this model
application playbooks should be decoupled from the cloud
provider and customizable by the end user. A clean
decoupling of application control policy and playbooks from
the cloud provider infrastructure is a necessary architectural
step to prevent cloud platforms from becoming complex and
inflexible as application demands change overtime.

The Multi Cloud Application Deployment Controller (Multi
Cloud - ADC) facilitates the separation of end user
applications to define and customize their optional playbook
and policies, outside of the cloud provider using the provider
infrastructure APIs. A principled layers approach offers the
best potential for application developers to innovate in their
control policies and customize their playbooks to the needs of
their applications, while deploying on multi-clouds

This separation implies that the application deployment
controller consists of user defined playbooks function
independently of one another and can run on multi-clouds
using the Cloud interface translation plugin.

The (multi-cloud ADC) service is based on resource
reservation contracts whose terms are negotiated and
expressed through exchanges of property lists. The reservation
terms define the timeframe for active resources such as cloud
servers

The main goals of all three of these configuration
management tools are consistency, reliability, speed, minimal
system impact and easy to learn. Overall, the end-user should
be able to know that the software is deployed to all of the
specified nodes and configured as described. They should also
know if something fails where it fails and what if anything
else is going to be installed. Likewise, the deployments should
be fast. In large companies, a package may need to be
deployed to thousands of nodes and if the management tool
goes one-by-one it may take days or weeks to complete. As
the software is deployed, the management tools should not be
demanding most of the resources either so the server can still
operate as normal.

IV. A COMPARISON OF SOFTWARE DELIVERY TOOLS

A. Ansible
Ansible was first released in February 2012 and over the

past three years it has gathered over 1,041 contributors, 65
releases, and nearly 14,000 commits.1 It has an agentless
architecture which is different than Chef and SaltStack which
rely on an agent based architecture. An agentless architecture
means that no agent is installed on the nodes which will be
controlled. This type of management can be seen in Figure 3.
This is helpful in that if a process is not running, then there is
no checking-in by the nodes resulting in no additional network
traffic and no background daemons running. Additionally,
Ansible differentiates itself from Chef and Salt by not
requiring SSH keys, no additional ports need to be opened
besides SSH, no root access is necessary although it can
configure things using sudo if necessary. These items make it
an ideal case for situations when high security is necessary or
greater stability/performance by not installing additional
monitoring software [5].

Figure 3 - Standalone management [10]

To control the nodes, Ansible retrieves the necessary hosts
from the inventory file and then executes the code over SSH.
While all of the software operates at reasonable speeds, SSH
can slow the process down compared to using ZeroMQ for
communication like Salt does [11]. The execution of the code
comes from a YAML file which is a descriptive language and
relatively easy to learn. Companies like Twitter [12],

1 These statistics are as of April 26, 2015 from

https://github.com/ansible/ansible

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 20:56:55 UTC from IEEE Xplore. Restrictions apply.

Evernote, EdX [13] and care.com all use Ansible for their
software deployment.

B. Chef
While Chef is one of the longest lived software

configuration management tools still around being founded in
2008, the base of contributable users is considerably smaller at
375 users, 239 releases, with 12,286 commits2. A simple
graphical overview of how a master/slave management looks

can be seen in Figure 4. Chef typically depends of a
master/slave configuration where there is a main master node
or server that recipes are uploaded to and then is deployed to
the clients. Where Chef really excels is the contribution of
cookbooks to help configure and deploy systems already built
and field tested by other users. As of May 2, 2015, there are
nearly 2200 cookbooks and over 62,500 chefs supporting the
supermarket on supermarket.chef.io. In addition, Chef’s
website interface also allows the administrator to view and
search node activity, assign cookbooks, roles and nodes to
tasks.

To control the clients in Chef, you can import a cookbook
or create one of your own. The cookbooks are written in Ruby,
so some knowledge of Ruby programming is very helpful,
especially since official documentation can be vague at times
for more advanced functions. Once imported into the server,
the administrator can use the WEBUI, which is easy to use,
assign the recipe to the nodes and execute it or the user can
proceed through a command line. Chef uses SSH to
communicate and authenticates via the use of certificates.
Companies like Ancestry.com, Bonobos, Etsy and Bloomberg
use Chef to manage their systems [14].

Table 1 - Features of Configuration Management Software

Ansible Chef SaltStack Shell

Language Python Ruby Python Shell

License GPL Apache Apache GNU

Mutual
Auth

Yes -
SSH Yes- Keys Yes No

Encrypts Yes –
SSH Yes - SSL Yes-

SSH*** No

Verify
mode Yes Yes- why

run mode Yes No

2 These statistics are as of April 26, 2015 from https://github.com/chef/chef

Agent-less Yes No** Both Yes

GUI Yes Yes Yes No

C. SaltStack
SaltStack is slightly older than Ansible with its initial

release in March of 2011, has a base of 1,078 contributors,
over 52,000 commits, and 86 releases as of May 2, 2015.
SaltStack depends on a master/minion system as well,
however, in this case, the clients make a request to join the
master node and when the master accepts, the client can then
be controlled. One of SaltStack’s main advantages is in
optimizing the speed, scalability and resiliency; this is
achieved through the ability to use of asynchronous file
servers, multiple tiers of masters and the ability to distribute
loads and redundancy. One of the benefits of this peering
system is that unlike Chef, minions can ask questions to the
master in order to get a more complete picture, for example,
they can use a database to look up, in real-time, information in
order to help complete the configuration of a minion [15].

A SaltStack operation has several steps. The first is to
define a state tree and assign parts of it to servers. The minions
at this point will download the state definition from the tree
and compare its current state to the state tree. At this point, the
minion will make the appropriate changes to make the two
match, and report back to the master. For example, the state
tree could ask that Apache is installed and running, the minion
may see that it is neither installed nor running and proceed
with installing it and setting it up as defined in your tree. Salt
also has various other grains to refine tasks on nodes from
coarse grains that are applied to all of the nodes to fine grains
that are node(s) specific. Companies like Lyft [16],
Overstock.com [17], Rackspace [18] and others all use
SaltStack to manage their servers, clouds and workstations.

V. METHODS
For the system testing performed in this paper, all were run

under Ubuntu 14.04 LTS server edition with 40GB of storage
and 3.86 GB of RAM. All of the software deployment
packages were configured to be run in a stand-alone fashion, if
possible, and no system or package optimization was
attempted. After each installation, all packages and unused
libraries were removed to provide a clean slate and to allow
for adequate comparability of the metrics collected during the
automated software deployment process. As mentioned above,
the key metrics included amount of code (lines of code, word
count, character count, Table 2) and software deployment
times both at full run as well as at no change for the two
packages, separately and combined (

Table 3). Details about the features of the three software
deployment tools can be found in Table 1. All of the execution
of the code was timed using the shell command “time” in
which the real-time was reported. The total file size of the
three packages (gnuplot, pspp, and octave) being installed in
the analytics package consumed 210.158MB of disk space as
reported by apt-get and the four packages (lammps, mricron,
mricron-data, and tm-align) being installing in the chemistry
package consumed 74.854MB of space.

Figure 4- Master/Agent management [10] Figure 4- Master/Agent management [10]

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 20:56:55 UTC from IEEE Xplore. Restrictions apply.

All of these tools are capable of being used for software
deployment. However, tying these tools into a platform that
can easily do infrastructure deployment also needs
consideration. It is important that after deployment of the
software and infrastructure the system is left intact with as
little perturbation from the deployment method as possible. As
such, Ansible is used in deployment method as our primary
tool.

Table 2 - Software Configuration Code Characteristics

Table 3 - Software Deployment Times in Seconds

3 This number is based off of the combined package code.

VI. RESULTS AND CONCLUSION
All three of these configuration management tools are more

than capable of achieving the simple tasks that were assigned
to them along with much more complex jobs if necessary.
Likewise, all of them have comparable features with the
exception of the agentless feature of Ansible which is unique
in this environment. This gave Ansible an advantage when it
came to configuring the host machines. All that is required of
Ansible is the system be available with an IP Address and that
it can host an SSH connection [19]. Both SaltStack and Chef
required agents be installed on the host machines [20].

When it comes to execution however, both SaltStack and
Chef significantly outperformed Ansible. Full run Ansible
took over 513 seconds, compared to 202 seconds for SaltStack
and a little over 101 seconds with Chef. Ansible was 1.54X
slower than SaltStack and 4X slower than Chef.

That being said, there are some limitations of this work that
need to be acknowledged. First, the code executed was not
optimized and kept as simple as possible to prevent any bias
based on coding. Second, it should be expected that the code
would scale out linearly as more additional nodes are added
since each of these tools are capable of parallelized
connections to nodes limited only by the bandwidth
connecting them. However, this parallelization was not tested
beyond 2 nodes. Third, the deployment packages (chemistry
and analytics) tested here were limited to installing a few
pieces of software. A more comprehensive test involving
deploying specific packages to hundreds of targeted nodes
based on their roles along with configuring the software and
starting their services, etc. would certainly impact the
deployment time and more rigorously evaluate how efficiently
the management tools work.

In conclusion, the end use of the product depends on the use
case of the company. If simplicity of code is critical, Salt
Stack is the clear choice with close to half the amount of code
needed compared to Chef and nearly four times less code than
Ansible. Likewise, if speed is important, then Chef is the
winner. It took half the time compared to Salt Stack and a fifth
of the time compared to Ansible. Lastly, if neither speed of
deployment nor size of code is the primary concern then
Ansible is the most interesting project of them all considering
no additional agents need to be installed. Likewise, the time
shown in Table 3 does not reflect any additional time required
to install and configure the agents on each host which may not
play a significant factor in the overall situation, it should be
considered. One additional benefit for Ansible is that while the
process may take slightly longer, there is an option that allows
for dry-runs to be executed to verify that your code will work
prior to execution which could save time overall, especially
for complex tasks.

Regardless of which deployment tool or tools a company
uses, these tools and this level of automation is critical in
todays world of cloud computing which systems can be
brought up and down in an instance. Which tool is chosen
depends on the company policies and level of comfort of the
user, but the benefits of reproducibility, speed, and mass
deployment is significant.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 20:56:55 UTC from IEEE Xplore. Restrictions apply.

VIII. REFERENCES

[1] Vision Solutions, "Assessing the Financial Impact of
Downtime: Understand the factors that contribute to the cost
of downtime and accurately calculate its total cost in your
organization.," Vision Solutions Inc., Irvine, CA, 2014.

[2] U.S. Bureau of Labor Statistics, "Table B-3. Average hourly
and weekly earnings of all employees on private nonfarm
payrolls by industry sector, seasonally adjusted," 03 04 2015.
[Online]. Available: http://data.bls.gov/cgi-
bin/print.pl/news.release/empsit.t19.htm. [Accessed 30 04
2015].

[3] R. Di Cosmo, A. Eiche, J. Mauro, G. Zavattaro and S.
Zacchiroli, "Automatic Deployment of Software Components
in the Cloud with the Aeolus Blender," Inria Sophia Antipolis,
Valbonne, 2015.

[4] T. P. Morgan, "A Rare Peek Into The Massive Scale of
AWS," enterprisetech.com, 14 11 2014. [Online]. Available:
http://www.enterprisetech.com/2014/11/14/rare-peek-
massive-scale-aws/. [Accessed 02 06 2015].

[5] Ansible Inc., "WhitePaper: Ansible In Depth," ANSIBLE,
INC, 2014.

[6]

S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram,
and J. Bigus. "Using control theory to achieve service level
objectives in performance management". In Proc. of IM,
2002.

[7]

G. Soundararajan, C. Amza, and A. Goel. "Database
replication policies for dynamic content applications". In
Proc. of EuroSys, 2006.

[8] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal.
"Dynamic provisioning of multi-tier internet applications". In
Proc. of ICAC, 2005

[9] P. Rad , R. Boppana, P. lama, G. Berman, and Mo Jamshidi,
"Low-Latency Software Defined Network for High
Performance Clouds", in Proceedings of the 8th IEEE System
of Systems, 2015, pp. 805-812

[10] Google Cloud Platform, "Compute Engine Management with
Puppet, Chef, Salt, and Ansible," [Online]. Available:
https://cloud.google.com/developers/articles/google-compute-
engine-management-puppet-chef-salt-ansible/. [Accessed 02
05 2015].

[11] SaltStack - Github, "RAET (Reliable Asynchronous Event
Transport) Protocol," GitHub, 28 02 2015. [Online].
Available:
https://github.com/saltstack/raet/blob/master/README.md.
[Accessed 02 05 2015].

[12] Ansible, "How Twitter Uses Ansible," Twi, 21 05 2014.
[Online]. Available:
https://www.youtube.com/watch?v=fwGrKXzocg4.
[Accessed 02 05 2015].

[13] J. Jarvis, "How edX uses ansible," Speaker Deck, 20 05 2014.
[Online]. Available: https://speakerdeck.com/jarv/how-edx-
uses-ansible. [Accessed 02 05 2015].

[14] Chef Software, Inc., "Chef Customers," Chef Software, Inc.,
[Online]. Available: https://www.chef.io/customers/.
[Accessed 02 05 2015].

[15] SaltStack, "6. Reactor System," SaltStack Inc., [Online].
Available:
http://docs.saltstack.com/en/latest/topics/reactor/index.html.
[Accessed 02 05 2015].

[16] J. Miranda, "Lyft Replaces Puppet with SaltStack," InfoQ, 22
08 2014. [Online]. Available:

http://www.infoq.com/news/2014/08/lyft-moves-to-saltstack.
[Accessed 02 05 2015].

[17] SaltStack, "SaltConf15 - Overstock.com - Automate Self-
Service Provisioning of Developer Workstations," 26 03
2015. [Online]. Available:
https://www.youtube.com/watch?v=qqPRNU1tia4. [Accessed
02 05 2015].

[18] SaltStack, "SaltConf15 - Rackspace - Automating Hybrid
Cloud Infrastructures," 14 04 2015. [Online]. Available:
https://www.youtube.com/watch?v=yDv_H9j1PI0. [Accessed
02 05 2015].

[19] "Inventory," Ansible, Inc., 22 04 2015. [Online]. Available:
http://docs.ansible.com/intro_inventory.html. [Accessed 24 04
2015].

[20] W. E. E Wong, "OpenSource Automation in Cloud
Computing," in Proceedings of the 4th International
Conference on Computer Engineering and Networks, Springer
International Publishing, 2015, pp. 805-812.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 20:56:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

